题目内容
.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为( )
![]()
A.40海里 B.60海里 C.70海里 D.80海里
D【考点】等腰三角形的判定与性质;方向角;平行线的性质.
【专题】应用题.
【分析】根据方向角的定义即可求得∠M=70°,∠N=40°,则在△MNP中利用内角和定理求得∠NPM的度数,证明三角形MNP是等腰三角形,即可求解.
【解答】解:MN=2×40=80(海里),
∵∠M=70°,∠N=40°,
∴∠NPM=180°﹣∠M﹣∠N=180°﹣70°﹣40°=70°,
∴∠NPM=∠M,
∴NP=MN=80(海里).
故选:D.
【点评】本题考查了方向角的定义,以及三角形内角和定理,等腰三角形的判定定理,理解方向角的定义是关键.
练习册系列答案
相关题目