ÌâÄ¿ÄÚÈÝ
ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬OΪ ×ø±êԵ㣮
£¨1£©Ì½¾¿Ò»£º¢ÙÒÑÖªµãA£¨3£¬1£©£¬µãBµÄ×ø±êΪ£¨1£¬2£©£¬Á¬½ÓOA£¬Æ½ÒÆÏß¶ÎOA£¬Ê¹µãOÂäÔÚµãB£®ÉèµãAÂäÔÚµãC£¬ÇëÔÚͼ1ÖÐ×÷³öÆ½ÒÆºóµÄÏß¶ÎBC£¬ÔòµãCµÄ×ø±êÊÇ £»
¢ÚÈôµãA£¨3£¬1£©£¬µãBµÄ×ø±êΪ£¨6£¬2£©£¬Á¬½ÓOA£¬Æ½ÒÆÏß¶ÎOA£¬Ê¹µãOÂäÔÚµãB£®ÉèµãAÂäÔÚµãC£¬ÇëÔÚͼ2ÖÐ×÷³öÆ½ÒÆºóµÄÏß¶ÎBC£¬ÔòµãCµÄ×ø±êÊÇ £»
£¨2£©Ì½¾¿¶þ£º¢ÙÈôÒÑÖªµãA£¨a£¬b£©£¬B£¨c£¬d£©£¬Á¬½ÓOA£¬Æ½ÒÆÏß¶ÎOA£¬Ê¹µãOÂäÔÚµãB£®ÉèµãAÂäÔÚµãC£¬ÇëÔÚͼ1ÖÐ×÷³öÆ½ÒÆºóµÄÏß¶ÎBC£¬ÔòµãCµÄ×ø±êÊÇ £»
¢ÚÔÚ¢ÙµÄÌõ¼þÏ£¬Ë³´ÎÁ¬½ÓO£¬A£¬C£¬B£¬Èç¹ûËùµÃµ½µÄͼÐÎÊÇÁâÐΣ¬Ö±½Óд³öa£¬b£¬c£¬dÓ¦Âú×ãµÄ¹ØÏµÊ½ £®

£¨1£©Ì½¾¿Ò»£º¢ÙÒÑÖªµãA£¨3£¬1£©£¬µãBµÄ×ø±êΪ£¨1£¬2£©£¬Á¬½ÓOA£¬Æ½ÒÆÏß¶ÎOA£¬Ê¹µãOÂäÔÚµãB£®ÉèµãAÂäÔÚµãC£¬ÇëÔÚͼ1ÖÐ×÷³öÆ½ÒÆºóµÄÏß¶ÎBC£¬ÔòµãCµÄ×ø±êÊÇ
¢ÚÈôµãA£¨3£¬1£©£¬µãBµÄ×ø±êΪ£¨6£¬2£©£¬Á¬½ÓOA£¬Æ½ÒÆÏß¶ÎOA£¬Ê¹µãOÂäÔÚµãB£®ÉèµãAÂäÔÚµãC£¬ÇëÔÚͼ2ÖÐ×÷³öÆ½ÒÆºóµÄÏß¶ÎBC£¬ÔòµãCµÄ×ø±êÊÇ
£¨2£©Ì½¾¿¶þ£º¢ÙÈôÒÑÖªµãA£¨a£¬b£©£¬B£¨c£¬d£©£¬Á¬½ÓOA£¬Æ½ÒÆÏß¶ÎOA£¬Ê¹µãOÂäÔÚµãB£®ÉèµãAÂäÔÚµãC£¬ÇëÔÚͼ1ÖÐ×÷³öÆ½ÒÆºóµÄÏß¶ÎBC£¬ÔòµãCµÄ×ø±êÊÇ
¢ÚÔÚ¢ÙµÄÌõ¼þÏ£¬Ë³´ÎÁ¬½ÓO£¬A£¬C£¬B£¬Èç¹ûËùµÃµ½µÄͼÐÎÊÇÁâÐΣ¬Ö±½Óд³öa£¬b£¬c£¬dÓ¦Âú×ãµÄ¹ØÏµÊ½
¿¼µã£º¼¸ºÎ±ä»»×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©¢ÙÓÉÌâÒâºÍͼÏó¿ÉÖª£ºOAÓ¦¸ÃÓÒÒÆ1¸öµ¥Î»£¬ÉÏÒÆÁ½¸öµ¥Î»ºóµÃ³öµÄC£¬Òò´ËCµÄ×ø±êÊÇ£¨4£¬3£©£®¢Úµ±BÊÇ£¨6£¬2£©µÄʱºò£¬OAÓ¦¸ÃÓÒÒÆ6¸öµ¥Î»ÉÏÒÆÁ½¸öµ¥Î»ºóµÃ³öµÄC£¬Òò´ËCµÄ×ø±êÊÇ£¨9£¬3£©
£¨2£©¢ÙÓÉÌâÒâºÍͼÏó¿ÉÖª£ºOAÓ¦¸ÃÓÒÒÆc¸öµ¥Î»£¬ÉÏÒÆdµ¥Î»ºóµÃ³öµÄC£¬Òò´ËCµÄ×ø±êÊÇ£¨a+c£¬b+d£©£¬¢Úµ±OACBÊÇÁâÐÎʱ£¬Á½ÌõÁÚ±ßÓ¦¸ÃÏàµÈ£¬AC=BC£¬Òò´Ë
=
£¬Òò´Ëa2+b2=c2+d2£¬
£¨2£©¢ÙÓÉÌâÒâºÍͼÏó¿ÉÖª£ºOAÓ¦¸ÃÓÒÒÆc¸öµ¥Î»£¬ÉÏÒÆdµ¥Î»ºóµÃ³öµÄC£¬Òò´ËCµÄ×ø±êÊÇ£¨a+c£¬b+d£©£¬¢Úµ±OACBÊÇÁâÐÎʱ£¬Á½ÌõÁÚ±ßÓ¦¸ÃÏàµÈ£¬AC=BC£¬Òò´Ë
| (a+c-a)2+(b+d-b)2 |
| (a+c-c)2+(b+d-d)2 |
½â´ð£º
½â£º£¨1£©Ì½¾¿Ò»£º¢Ù¡ßµãA£¨3£¬1£©£¬Á¬½ÓOA£¬Æ½ÒÆÏß¶ÎOA£¬Ê¹µãOÂäÔÚµãB£®
ÉèµãAÂäÔÚµãC£¬ÈôµãBµÄ×ø±êΪ£¨1£¬2£©£¬
ÔòCµÄ×ø±êΪ£¨4£¬3£©£¬Èçͼ1Ëùʾ£º
¢ÚµãA£¨3£¬1£©£¬Á¬½ÓOA£¬Æ½ÒÆÏß¶ÎOA£¬Ê¹µãOÂäÔÚµãB£®
ÉèµãAÂäÔÚµãC£¬ÈôµãBµÄ×ø±êΪ£¨6£¬2£©£¬
ÔòCµÄ×ø±êΪ£¨9£¬3£©£¬Èçͼ2Ëùʾ
£¨2£©¢Ù¡ßA£¨a£¬b£©B£¨c£¬d£©£¬
¡àOAÓ¦¸ÃÓÒÒÆc¸öµ¥Î»£¬ÉÏÒÆdµ¥Î»ºóµÃ³öµÄC£¬
¡àCµÄ×ø±êÊÇ£¨a+c£¬b+d£©£»
¢Ú¡ßOACBÊÇÁâÐÎʱ£¬
¡àAC=BC£¬
Òò´Ë
=
£¬
¼´a2+b2=c2+d2£®
½â£º£¨1£©Ì½¾¿Ò»£º¢Ù¡ßµãA£¨3£¬1£©£¬Á¬½ÓOA£¬Æ½ÒÆÏß¶ÎOA£¬Ê¹µãOÂäÔÚµãB£®
ÉèµãAÂäÔÚµãC£¬ÈôµãBµÄ×ø±êΪ£¨1£¬2£©£¬
ÔòCµÄ×ø±êΪ£¨4£¬3£©£¬Èçͼ1Ëùʾ£º
¢ÚµãA£¨3£¬1£©£¬Á¬½ÓOA£¬Æ½ÒÆÏß¶ÎOA£¬Ê¹µãOÂäÔÚµãB£®
ÉèµãAÂäÔÚµãC£¬ÈôµãBµÄ×ø±êΪ£¨6£¬2£©£¬
ÔòCµÄ×ø±êΪ£¨9£¬3£©£¬Èçͼ2Ëùʾ
£¨2£©¢Ù¡ßA£¨a£¬b£©B£¨c£¬d£©£¬
¡àOAÓ¦¸ÃÓÒÒÆc¸öµ¥Î»£¬ÉÏÒÆdµ¥Î»ºóµÃ³öµÄC£¬
¡àCµÄ×ø±êÊÇ£¨a+c£¬b+d£©£»
¢Ú¡ßOACBÊÇÁâÐÎʱ£¬
¡àAC=BC£¬
Òò´Ë
| (a+c-a)2+(b+d-b)2 |
| (a+c-c)2+(b+d-d)2 |
¼´a2+b2=c2+d2£®
µãÆÀ£º±¾Ì⿼²éͼÐÎµÄÆ½ÒƱ任£®¹Ø¼üÊÇÒª¶®µÃ×óÓÒÆ½ÒƵãµÄ×Ý×ø±ê²»±ä£¬¶øÉÏÏÂÆ½ÒÆÊ±µãµÄºá×ø±ê²»±ä£¬ÒªÇóѧÉúÊìÁ·ÕÆÎÕÏà¹ØµÄ»ù´¡ÖªÊ¶²ÅÄܺܺýâ¾öÕâÀàÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿