题目内容
如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B;④AD∥BE,且∠D=∠B.其中能说明AB∥DC的条件有( )
A. 4个 B. 3个 C. 2个 D. 1个
如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;
(2)平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2 ;
(3)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标 .
下列命题是真命题的是( )
A. 必然事件发生的概率等于0.5
B. 5名同学的数学成绩是92,95,95,98,110,则他们的平均分是98,众数是95
C. 射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定
D. 要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法
如图,已知∠1=60°,∠C+∠D+∠E+∠F+∠A+∠B=_______。
如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2015条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ).
A.0 B.1 C. D.
如图(1),在平面直角坐标系中,抛物线经过
A(-1,0)、B(0,3)两点,与轴交于另一点C,顶点为D.
(1)求该抛物线的解析式及点C、D的坐标;
(2)经过点B、D两点的直线与轴交于点E,若点F是抛物线上一点,以A、B、E、F为顶点的四边形是平行四边形,求点F的坐标;
(3)如图(2)P(2,3)是抛物线上的点,Q是直线AP上方的抛物线上一动点,求△APQ的最大面积和此时Q点的坐标.
图(1) 图(2)
先化简,后求值: ,其中= -3.1
a是3的倒数,那么a的值等于( )
A. - B. -3 C. 3 D.
如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是( )
A. 4 B. 2 C. D.