题目内容


阅读材料:                                                                                        

(1)1的任何次幂都为1;                                                                     

(2)﹣1的奇数次幂为﹣1;                                                                   

(3)﹣1的偶数次幂为1;                                                                     

(4)任何不等于零的数的零次幂为1.                                                   

请问当x为何值时,代数式(2x+3)x+2016的值为1.                                     


【考点】零指数幂;有理数的乘方.                                                       

【专题】阅读型.                                                                              

【分析】分为2x+3=1,2x+3=﹣1,x+2016=0三种情况求解即可.                 

【解答】解:①当2x+3=1时,解得:x=﹣1,此时x+2016=2015,则(2x+3)x+2016=12015=1,所以x=﹣1.                  

②当2x+3=﹣1时,解得:x=﹣2,此时x+2016=2014,则(2x+3)x+2016=(﹣1)2014=1,所以x=﹣2.                  

③当x+2016=0时,x=﹣2016,此时2x+3=﹣4029,则(2x+3)x+2016=(﹣4029)0=1,所以x=﹣2016.                

综上所述,当x=﹣1,或x=﹣2,或x=﹣2016时,代数式(2x+3)x+2016的值为1.                   

【点评】本题主要考查的是零指数幂的性质、有理数的乘方,分类讨论是解题的关键.                    


练习册系列答案
相关题目

小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表所示,                                                                

                                    购买商品A的数量/个                                     购买商品B的数量/个     购买总费用/元 

第一次购物                  6                                  5                                  1140

第二次购物                  3                                  7                                  1110

第三次购物                  9                                  8                                  1062

(1)在这三次购物中,第      次购物打了折扣;                             

(2)求出商品A、B的标价;                                                                 

(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?             

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网