题目内容
【题目】如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.
(1)试说明四边形EFCG是矩形;
(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,
①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;
②求点G移动路线的长.
![]()
【答案】(1)证明见解析;(2)①存在,矩形EFCG的面积最大值为12,最小值为
;②
.
【解析】
试题分析:(1)只要证到三个内角等于90°即可.
(2)①易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=
.然后只需求出CF的范围就可求出S矩形ABCD的范围.
②根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.
试题解析:解:(1)证明:如图,
∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.
∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.
∴四边形EFCG是矩形.
(2)①存在.
如答图1,连接OD,
∵四边形ABCD是矩形,∴∠A=∠ADC=90°.
∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.
∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴
.
∵AD=4,AB=3,∴BD=5.
∴
. ∴S矩形ABCD=2S△CFE=
.
∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.
∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.
∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°
Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如答图1所示.
此时,CF=CB=4.
Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如答图2所示,此时⊙O与射线BD相切,CF=CD=3.
Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如答图3所示.S△BCD=
BCCD=
BDCF″′.
∴4×3=5×CF″′.∴CF″′=
.
∴
≤CF≤4.
∵S矩形ABCD=
,∴
,即
.
∴矩形EFCG的面积最大值为12,最小值为
.
![]()
②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,
∴点G的移动路线是线段DG″.
∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.
∴
,即
,解得
.
∴点G移动路线的长为
.