题目内容
考点:平行四边形的性质
专题:
分析:由E、F是?ABCD的对角线AC上两点,DF∥BE.易证得AB=CD,∠BAE=∠CDF,∠AEB=∠CFD,则可证得△ABE≌△CDF,继而证得结论.
解答:解:添加的条件是:DF∥BE;
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∴∠BAE=∠DCF,
又∵∠DF∥BE,
∴∠BEF=∠DFE,
∴∠AEB=∠CFD,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(AAS).
∴AE=CF.
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∴∠BAE=∠DCF,
又∵∠DF∥BE,
∴∠BEF=∠DFE,
∴∠AEB=∠CFD,
在△ABE和△CDF中,
|
∴△ABE≌△CDF(AAS).
∴AE=CF.
点评:此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目
方程(a+2)x2+5xm-3-2=3是一元一次方程,则a和m分别为( )
| A、2和4 | B、-2和4 |
| C、2和-4 | D、-2和-4 |