题目内容

有4根木棒,它们的长度分别为5cm、7cm、9cm、12cm,从中选择三根首尾相接搭成一个三角形,有
 
种不同的选择方法.
考点:三角形三边关系
专题:
分析:首先求出从4根木棒中任意选择三根的所有情况;再根据三角形三边关系定理进行分析.
解答:解:任取三根,共有5,7,9;5,7,12;5,9,12;7,9,12四种情况,
∵5+7=12,
∴5,7,12不能构成三角形,
而5,7,9;5,9,12;7,9,12均满足三角形三边关系定理,
∴能构成三角形的有5,7,9;5,9,12;7,9,12,共三种不同的选择方法.
故答案为三.
点评:本题考查了三角形三边关系定理:三角形两边之和大于第三边.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网