题目内容
已知关于x的一元二次方程x2﹣(2m+1)x+m2﹣4=0有两个不相等的实数根
(1)求实数m的取值范围;
(2)若两个实数根的平方和等于15,求实数m的值.
如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC= (填度数).
已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.
要使二次根式有意义,字母x必须满足的条件是 .
将抛物线y=3x2向右平移两个单位,再向下平移4个单位,所得抛物线是( )
A.y=3(x+2)2+4 B.y=3(x﹣2)2+4
C.y=3(x﹣2)2﹣4 D.y=3(x+2)2﹣4
已知抛物线y=ax2+2x﹣3经过点(1,3)
(1)求a的值;
(2)当x=3时,求y的值;
(3)求这个抛物线的对称轴和顶点坐标.
二次函数的一般形式是 .
袋中装有大小相同的2个红球和2个绿球.
(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.
①求第一次摸到绿球,第二次摸到红球的概率;
②求两次摸到的球中有1个绿球和1个红球的概率;
(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.
如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为( )
A.30° B.45° C.50° D.70°