题目内容
五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是( )
A. ; B. ; C. ; D.
如果只用一种正多边形进行镶嵌,那么在下面的正多边形中,不能镶嵌成一个平面的是( )
A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形
如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF的取值范围为______.
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
[定理表述]
请你写出勾股定理内容(用文字语言表述):
[尝试证明]
以图1中的直角三角形为基础,可以构造出以a、b为底,以(a+b)为高的直角梯形(如图2),请你利用图2,证明勾股定理.
如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于____.
化简的结果是( )
A. B. C. D.
如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AB=2 , AC=.
(1)求∠A的度数.
(2)求弧CBD的长.
(3)求弓形CBD的面积.
如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是( )
如图,△ABC是一张锐角三角形的硬纸片.AD是边BC上的高,BC=40cm,AD=30cm.从这张硬纸片剪下一个长HG是宽HE的2倍的矩形EFGH.使它的一边EF在BC上,顶点G,H分别在AC,AB上.AD与HG的交点为M.
(1)求证: ;
(2)求这个矩形EFGH的周长.