题目内容
下列等式成立的是( )
A.
B.
C.
D.
如图 1,二次函数的图像过点 A (3,0),B (0,4)两点,动点 P 从 A 出发,在线段 AB 上沿 A → B 的方向以每秒 2 个单位长度的速度运动,过点P作 PD⊥y 于点 D ,交抛物线于点 C .设运动时间为 t (秒).
(1)求二次函数的表达式;
(2)连接 BC ,当t=时,求△BCP的面积;
(3)如图 2,动点 P 从 A 出发时,动点 Q 同时从 O 出发,在线段 OA 上沿 O→A 的方向以 1个单位长度的速度运动,当点 P 与 B 重合时,P 、 Q 两点同时停止运动,连接 DQ 、 PQ ,将△DPQ沿直线 PC 折叠到 △DPE .在运动过程中,设 △DPE 和 △OAB重合部分的面积为 S ,直接写出 S 与 t 的函数关系式及 t 的取值范围.
如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
A、 B、 C、 D、
如图,将正方形ABCD的边AD和边BC折叠,使点C与点D重合于正方形内部一点O,已知点O到边CD的距离为a,则点O到边AB的距离为 .(用a的代数式表示)
如图,已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则( )
A.圆锥的底面半径为3
B.tanα=
C.圆锥的表面积为12π
D.该圆锥的主视图的面积为8
如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上.将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.
(1)在网格中画出△A1B1C1和△A1B2C2;
(2)计算点C在变换到点C2的过程中经过的路线长;
(3)计算线段B1C1在变换到线段B2C2的过程中扫过的图形的面积.
(1)计算:;
(2)解不等式:并将解集在数轴上表示出来.
下面的图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
如果a、b是方程x2-3x+1=0的两根,那么代数式a2+2b2-3b的值为( )
A.6 B.-6 C.7 D.-7