ÌâÄ¿ÄÚÈÝ
18£®ÏÂÁи÷ʽµÄÔËËã½á¹ûÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©| A£® | $\frac{3}{x}$¡Â$\frac{x}{3}$=$\frac{9}{x}$ | B£® | £¨$\frac{1}{x-3}-\frac{x+1}{{x}^{2}-1}$£©•£¨x-3£©=$\frac{2}{x-1}$ | ||
| C£® | £¨$\frac{a}{a-2}-\frac{a}{a+2}$£©•$\frac{4-{a}^{2}}{a}$=4 | D£® | £¨$\frac{{b}^{2}}{a+b}-\frac{{a}^{2}}{a+b}$£©•$\frac{ab}{a-b}$=ab |
·ÖÎö Ö±½ÓÀûÓ÷Öʽ»ìºÏÔËËã·¨Ôò·Ö±ð»¯¼ò·ÖʽµÃ³ö´ð°¸£®
½â´ð ½â£ºA¡¢$\frac{3}{x}$¡Â$\frac{x}{3}$=$\frac{3}{x}$•$\frac{3}{x}$=$\frac{9}{{x}^{2}}$£¬¹Ê´ËÑ¡Ïî´íÎó£»
B¡¢£¨$\frac{1}{x-3}-\frac{x+1}{{x}^{2}-1}$£©•£¨x-3£©
=$\frac{1}{x-3}$¡Á£¨x-3£©-$\frac{x+1}{£¨x+1£©£¨x-1£©}$¡Á£¨x-3£©
=1-$\frac{1}{x-1}$¡Á£¨x-3£©
=$\frac{2}{x-1}$£¬¹Ê´ËÑ¡ÏîÕýÈ·£»
C¡¢£¨$\frac{a}{a-2}-\frac{a}{a+2}$£©•$\frac{4-{a}^{2}}{a}$
=-£¨a+2£©-£¨2-a£©
=-4£¬¹Ê´ËÑ¡Ïî´íÎó£»
D¡¢£¨$\frac{{b}^{2}}{a+b}-\frac{{a}^{2}}{a+b}$£©•$\frac{ab}{a-b}$
=$\frac{£¨b+a£©£¨b-a£©}{a+b}$•$\frac{ab}{a-b}$
=-ab£¬¹Ê´ËÑ¡Ïî´íÎó£»
¹ÊÑ¡£ºB£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁË·ÖʽµÄ»ìºÏÔËË㣬ÕýÈ·»¯¼ò·ÖʽÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®»¯¼ò$\frac{5{x}^{3}y}{15{x}^{2}{y}^{2}}$µÄ½á¹û£¨¡¡¡¡£©
| A£® | $\frac{x}{10y}$ | B£® | $\frac{{x}^{3}y}{10{x}^{2}{y}^{2}}$ | C£® | $\frac{x}{3y}$ | D£® | $\frac{{x}^{3}y}{3{x}^{2}{y}^{2}}$ |