题目内容
4.分析 根据等边对等角的性质可得∠B=∠C,然后根据“角角边”证明△BME和△CMF全等,再根据全等三角形对应边相等即可得证.
解答 证明:∵AB=AC,
∴∠B=∠C,
∵ME⊥AB,MF⊥AC,
∴∠BEM=∠CFM=90°,
在△BME和△CMF中,$\left\{\begin{array}{l}{∠B=∠C}\\{∠BEM=∠CFM=90°}\\{ME=MF}\end{array}\right.$,
∴△BME≌△CMF(AAS),
∴ME=MF.
点评 本题考查了全等三角形的判定与性质,等腰三角形两底角相等的性质,根据垂直得到90°的相等的角是解题的关键,也是本题容易忽视的条件.
练习册系列答案
相关题目
14.如表为某市居民每月用水收费标准,(单位:元/m3).
(1)某用户1月用水10立方米,共交水费23元,则a=2.3元/m3;
(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费60.8元;
(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?
| 用水量 | 单价 |
| 0<x≤22 | a |
| 剩余部分 | a+1.1 |
(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费60.8元;
(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?
15.下列计算结果正确的是( )
| A. | 2+$\sqrt{5}$=2$\sqrt{5}$ | B. | $\sqrt{6}$÷$\sqrt{2}$=$\sqrt{3}$ | C. | (-2a2)3=-6a6 | D. | (x+1)2=x2+1 |
12.若分式$\frac{x+2}{x-2}$的值为0,则x的取值应满足是( )
| A. | x=-2 | B. | x≠-2 | C. | x=2 | D. | x≠2 |
19.下列分式的变形正确的是( )
| A. | $\frac{a}{a-1}-\frac{1}{a-1}=1$ | B. | $\frac{m}{{{m^2}+1}}=\frac{1}{m+1}$ | C. | $\frac{{{x^2}-1}}{x-1}=x-1$ | D. | $\frac{-a-1}{a+1}=-\frac{a-1}{a+1}$ |
9.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |