题目内容
【题目】如图,已知正方形
的边长为
,点
为正方形的中心,点
为
边上一动点,直线
交
于点
,过点
作
,垂足为点
,连接
,则
的最小值为( )
![]()
A.2B.
C.
D.![]()
【答案】D
【解析】
连接OD,AC,取OD中点F,由∠OED=90°可证得点E在以OD中点F为圆心,DF为半径的圆上,进而可知当点C、E、F三点在同一直线上时,CE取最小值,由正方形的性质可得OD=OC=2,进而可得OF=1,最后用勾股定理即可求得CF的长,进而可求得CE的最小值.
解:连接OD,AC,
由题意可知,在正方形中,OD⊥AC,
∵在△ODE中OD的长为定值,∠OED始终为90°,
∴点E在以OD中点F为圆心,OD为直径的圆上,
连接EF,CE,当点C、E、F三点在同一直线上时,CE取最小值,
∵正方形的边长为
,点O为正方形中心,
∴
,
∴
,
∴在Rt△ABC中,
,
∴CE的最小值为![]()
故选:D.
![]()
练习册系列答案
相关题目