题目内容

如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC.求证:AE=BE.
考点:等腰三角形的判定与性质
专题:证明题
分析:由AD平分∠CAB,DE∥AC可证得∠DAE=∠ADE,得到AE=DE,再结合BD⊥AD,可得∠EDB=∠EBD,得到ED=EB,从而可得出结论.
解答:证明:∵DE∥AC,
∴∠CAD=∠ADE,
∵AD平分∠CAB,
∴∠CAD=∠EAD,
∴∠EAD=∠ADE,
∴AE=ED,
∵BD⊥AD,
∴∠ADE+∠EDB=90°,∠DAB+∠ABD=90°,
又∠ADE=∠DAB,
∴∠EDB=∠ABD,
∴DE=BE,
∴AE=BE.
点评:本题主要考查等腰三角形的性质和判定,利用DE作中介得到AE=DE,BE=DE是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网