题目内容

如图,水库大坝的横断面近似于梯形ABCD,迎水坡BC的倾斜角∠D=30°,背水坡AB的坡比为1.2:1,坝顶BC=6米,坝高CE=8米,求CD和AD的长.
考点:解直角三角形的应用-坡度坡角问题
专题:
分析:作BF⊥AD,垂足点F,得到两个直角三角形和一个矩形,利用相应的性质求解即可.
解答:解:作BF⊥AD,垂足点F,则四边形BCEF是矩形,

由题意得,BC=EF=6米,BF=CE=8米,斜坡AB的坡比为1.2:1,
在Rt△ABF中,
BF
AF
=
1.2
1

∴AF=
20
3
米.
在Rt△CED中,∠D=30°,
∴CD=2CE=16米,DE=CEcot∠D=8×
3
3
=
8
3
3
米,
∴AD=AF+EF+ED=
20
3
+6+
8
3
3
=
38+8
3
3
(米).
故CD长16米,AD长
38+8
3
3
米.
点评:本题考查了解直角三角形的应用-坡度坡角问题,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网