ÌâÄ¿ÄÚÈÝ

14£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2+bx+1½»yÖáÓÚµãA£¬½»xÖáÕý°ëÖáÓÚµãB£¨4£¬0£©£¬Óë¹ýAµãµÄÖ±ÏßÏཻÓÚÁíÒ»µãD£¨3£¬$\frac{5}{2}$£©£¬¹ýµãD×÷DC¡ÍxÖᣬ´¹×ãΪC£®
£¨1£©ÇóÅ×ÎïÏߵıí´ïʽ£»
£¨2£©µãPÔÚÏß¶ÎOCÉÏ£¨²»ÓëµãO¡¢CÖØºÏ£©£¬¹ýP×÷PN¡ÍxÖᣬ½»Ö±ÏßADÓÚM£¬½»Å×ÎïÏßÓÚµãN£¬Á¬½ÓCM£¬Çó¡÷PCMÃæ»ýµÄ×î´óÖµ£»
£¨3£©ÈôPÊÇxÖáÕý°ëÖáÉϵÄÒ»¶¯µã£¬ÉèOPµÄ³¤Îªt£¬ÊÇ·ñ´æÔÚt£¬Ê¹ÒÔµãM¡¢C¡¢D¡¢NΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¿Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©°ÑB£¨4£¬0£©£¬µãD£¨3£¬$\frac{5}{2}$£©´úÈëy=ax2+bx+1¼´¿ÉµÃ³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÏÈÓú¬tµÄ´úÊýʽ±íʾP¡¢M×ø±ê£¬ÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½Çó³ö¡÷PCMµÄÃæ»ýÓëtµÄº¯Êý¹ØÏµÊ½£¬È»ºóÔËÓÃÅä·½·¨¿ÉÇó³ö¡÷PCMÃæ»ýµÄ×î´óÖµ£»
£¨3£©ÈôËıßÐÎDCMNΪƽÐÐËıßÐΣ¬ÔòÓÐMN=DC£¬¹Ê¿ÉµÃ³ö¹ØÓÚtµÄ¶þÔªÒ»´Î·½³Ì£¬½â·½³Ì¼´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£º£¨1£©°ÑµãB£¨4£¬0£©£¬µãD£¨3£¬$\frac{5}{2}$£©£¬´úÈëy=ax2+bx+1Öеã¬$\left\{\begin{array}{l}{16a+4b+1=0}\\{9a+3b+1=\frac{5}{2}}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{a=-\frac{3}{4}}\\{b=\frac{11}{4}}\end{array}\right.$£¬
¡àÅ×ÎïÏߵıí´ïʽΪy=-$\frac{3}{4}$x2+$\frac{11}{4}$x+1£»
£¨2£©ÉèÖ±ÏßADµÄ½âÎöʽΪy=kx+b£¬
¡ßA£¨0£¬1£©£¬D£¨3£¬$\frac{5}{2}$£©£¬
¡à$\left\{\begin{array}{l}{b=1}\\{3k+b=\frac{5}{2}}\\{\;}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=1}\end{array}\right.$£¬
¡àÖ±ÏßADµÄ½âÎöʽΪy=$\frac{1}{2}$x+1£¬
ÉèP£¨t£¬0£©£¬
¡àM£¨t£¬$\frac{1}{2}$t+1£©£¬
¡àPM=$\frac{1}{2}$t+1£¬
¡ßCD¡ÍxÖᣬ
¡àPC=3-t£¬
¡àS¡÷PCM=$\frac{1}{2}$PC•PM=$\frac{1}{2}¡Á$£¨3-t£©£¨$\frac{1}{2}$t+1£©£¬
¡àS¡÷PCM=-$\frac{1}{4}$t2+$\frac{1}{4}$t+$\frac{3}{2}$=-$\frac{1}{4}$£¨t-$\frac{1}{2}$£©2+$\frac{25}{16}$£¬
¡à¡÷PCMÃæ»ýµÄ×î´óÖµÊÇ$\frac{25}{16}$£»
£¨3£©¡ßOP=t£¬
¡àµãM£¬NµÄºá×ø±êΪt£¬
ÉèM£¨t£¬$\frac{1}{2}$t+1£©£¬N£¨t£¬-$\frac{3}{4}$t2+$\frac{11}{4}$t+1£©£¬
¡à|MN|=|-$\frac{3}{4}$t2+$\frac{11}{4}$t+1-$\frac{1}{2}$t-1|=|-$\frac{3}{4}$t2+$\frac{9}{4}$t|£¬CD=$\frac{5}{2}$£¬
Èçͼ1£¬Èç¹ûÒÔµãM¡¢C¡¢D¡¢NΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬
¡àMN=CD£¬¼´-$\frac{3}{4}$t2+$\frac{9}{4}$t=$\frac{5}{2}$£¬
¡ß¡÷=-39£¬
¡à·½³Ì-$\frac{3}{4}$t2+$\frac{9}{4}$t=$\frac{5}{2}$ÎÞʵÊý¸ù£¬
¡à²»´æÔÚt£¬
Èçͼ2£¬Èç¹ûÒÔµãM¡¢C¡¢D¡¢NΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬
¡àMN=CD£¬¼´$\frac{3}{4}$t2-$\frac{9}{4}$t=$\frac{5}{2}$£¬
¡àt=$\frac{9+\sqrt{201}}{6}$£¬£¨¸ºÖµÉáÈ¥£©£¬
¡àµ±t=$\frac{9+\sqrt{201}}{6}$ʱ£¬ÒÔµãM¡¢C¡¢D¡¢NΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ®

µãÆÀ ±¾Ì⿼²éµÄÊǶþ´Îº¯ÊýµÄÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢Æ½ÐÐËıßÐεÄÅж¨£¬ÕýÈ·Çó³ö¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢ÀûÓÃÅä·½·¨°ÑÒ»°ãʽ»¯Îª¶¥µãʽ¡¢Çó³öº¯ÊýµÄ×îÖµÊǽâÌâµÄ¹Ø¼ü£¬×¢ÒâÁâÐεÄÅж¨¶¨ÀíµÄÁé»îÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø