题目内容


如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是      

 

 


 3 

【考点】三角形中位线定理;等腰直角三角形;圆周角定理.

【专题】压轴题.

【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.

【解答】解:∵点M,N分别是AB,BC的中点,

∴MN=AC,

∴当AC取得最大值时,MN就取得最大值,

当AC时直径时,最大,

如图,

∵∠ACB=∠D=45°,AB=6,

∴AD=6

∴MN=AD=3

故答案为:3

【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网