题目内容
6.关于x的不等式组$\left\{\begin{array}{l}{x+3>0}\\{-2k-x+6>0}\end{array}\right.$有解,但没有整数解,则k的取值范围是4≤k<$\frac{9}{2}$.分析 解两个不等式求得x的范围,由不等式组有解,但没有整数解可得关于k的不等式组,解之可得答案.
解答 解:解不等式x+3>0,得:x>-3,
解不等式-2k-x+6>0,得:x<6-2k,
∵不等式组有解,但没有整数解,
∴-3<6-2k≤-2,
解得:4≤k<$\frac{9}{2}$,
故答案为:4≤k<$\frac{9}{2}$
点评 本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
练习册系列答案
相关题目
18.把抛物线y=-x2向右平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为( )
| A. | y=-(x-1)2-3 | B. | y=-(x+1)2-3 | C. | y=-(x-1)2+3 | D. | y=-(x+a)2+3 |
15.下列实数,介于5和6之间的是( )
| A. | $\sqrt{21}$ | B. | $\sqrt{35}$ | C. | $\sqrt{42}$ | D. | $\root{3}{64}$ |