题目内容
已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的人数占全体的( )
A. 10% B. 15% C. 20% D. 25%
(1)如图1,已知,,可得=______;
(2)如图2,在(1)的条件下,如果平分,则=________;
(3)如图3,在(1)(2)的条件下,如果,则=_________;
(4)尝试解决下面问题:如图4,,,是的平分线,,求的度数.
某超市一月份的营业额为300万元,第一季度的营业额共为1500万元,如果平均每月增长率为,则由题意可列方程为( )
A. B.
C. D.
已知,如图,半径为1的⊙M经过直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,),⊙M的切线OC与直线AB交于点C.则∠ACO=____________.
如图,抛物线y=ax2+bx+c(a>0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
A. -1<P<0 B. -2<P<0 C. -4<P<-2 D. -4<P<0
如图1,图2,分别是吊车在吊一物品时的实物图与示意图,已知吊车底盘CD的高度为1.8米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米,参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)
计算:(﹣1)2018﹣|﹣2|+()0×+
四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)如图1,求证:矩形DEFG是正方形;
(2)若AB=2,CE=,求CG的长度;
(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.
二次函数( )
A. 有最大值1 B. 有最小值1 C. 有最大值3 D. 有最小值3