题目内容
【题目】如图,一次函数y=kx+b与反比例函数y=
的图象交于A(2,3),B(﹣3,n)两点.
![]()
(1)求反比例函数的解析式;
(2)过B点作BC⊥x轴,垂足为C,若P是反比例函数图象上的一点,连接PC,PB,求当△PCB的面积等于5时点P的坐标.
【答案】(1)y=
;(2)点P的坐标为(﹣8,﹣
),(2,3).
【解析】
(1)将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例函数解析式;
(2)由B点(-3,n)在反比例函数y=
的图象上,于是得到B(-3,-2),求得BC=2,设△PBC在BC边上的高为h,根据三角形的面积公式列方程即可得到结论.
(1)∵反比例函数y=
的图象经过点A(2,3),
∴m=6.
∴反比例函数的解析式是y=
;
(2)∵B点(﹣3,n)在反比例函数y=
的图象上,
∴n=﹣2,
∴B(﹣3,﹣2),
∴BC=2,设△PBC在BC边上的高为h,
则
BCh=5,
∴h=5,
∵P是反比例函数图象上的一点,
∴点P的横坐标为:﹣8或2,
∴点P的坐标为(﹣8,﹣
),(2,3).
![]()
练习册系列答案
相关题目
【题目】为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为
,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.
学生 垃圾类别 |
|
|
|
|
|
|
|
|
厨余垃圾 | √ | √ | √ | √ | √ | √ | √ | √ |
可回收垃圾 | √ | × | √ | × | × | √ | √ | √ |
有害垃圾 | × | √ | × | √ | √ | × | × | √ |
其他垃圾 | × | √ | √ | × | × | √ | √ | √ |
(1)求8名学生中至少有三类垃圾投放正确的概率;
(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.