题目内容
如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为____________.
一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原方向上平行前进,两次拐弯的角度是( )
A. 第一次右拐50°,第二次左拐130° B. 第一次左拐50°,第二次左拐130°
C. 第一次右拐50°,第二次右拐50° D. 第一次左拐50°,第二次右拐50°
如图,在矩形ABCD中,AB=3,点P是直线AD上一点,若满足△PBC是等腰三角形的点P有且只有3个,则AD的长为________
如图,□ABCD的对角线相交于点O,将线段OD绕点O旋转,使点D的对应点落在BC延长线上的点E处,OE交CD于H,连接DE.
(1)求证:DE⊥BC;
(2)若OE⊥CD,求证:2CE·OE=CD·DE;
(3)若OE⊥CD,BC=3,CE=1,求线段AC的长.
先化简,再求值:[x(x2y2-xy)-y(x2-x3y)]÷x2y,其中, .
如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为( )
A. B. C. D.
在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:
“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.
例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.
(1)已知点A(1,2),B(﹣3,1),P(0,t).
①若A,B,P三点的“矩面积”为12,求点P的坐标;
②直接写出A,B,P三点的“矩面积”的最小值.
(2)已知点E(4,0),F(0,2),M(m,4m),N(n, ),其中m>0,n>0.
①若E,F,M三点的“矩面积”为8,求m的取值范围;
②直接写出E,F,N三点的“矩面积”的最小值及对应n的取值范围.
因式分【解析】﹣8ax2+16axy﹣8ay2=______________.
按要求在已知图形上作图.
(1)画AG⊥DC于G.
(2)连结AC,画BF∥AC交DC的延长线于F.