题目内容
把半径为r的圆铁片沿着半径OA、OB剪成面积比为1:2的两个扇形S1、S2(如图),把这两个围成两个无底的圆锥.设这两个圆锥的高分别为h1、h2,则h1与h2的大小比较是
- A.h1>h2
- B.h1<h2
- C.h1=h2
- D.不能确定
A
分析:利用圆锥侧面展开图的弧长=底面周长得到圆锥底面半径和母线长的关系,进而利用勾股定理可求得各个圆锥的高,比较即可.
解答:设扇形S2做成圆锥的底面半径为R2,
由题意知,扇形S2的圆心角为240度,
则它的弧长=
=2πR2,R2=
,
由勾股定理得,h2=
r;
设扇形S1做成圆锥的底面半径为R1,
由题意知,扇形S1的圆心角为120度,
则它的弧长=
=2πR1,R1=
,
由勾股定理得,h1=
r,
∴h1>h2,
故选A.
点评:本题利用了勾股定理,弧长公式,圆的周长公式求解.
分析:利用圆锥侧面展开图的弧长=底面周长得到圆锥底面半径和母线长的关系,进而利用勾股定理可求得各个圆锥的高,比较即可.
解答:设扇形S2做成圆锥的底面半径为R2,
由题意知,扇形S2的圆心角为240度,
则它的弧长=
由勾股定理得,h2=
设扇形S1做成圆锥的底面半径为R1,
由题意知,扇形S1的圆心角为120度,
则它的弧长=
由勾股定理得,h1=
∴h1>h2,
故选A.
点评:本题利用了勾股定理,弧长公式,圆的周长公式求解.
练习册系列答案
相关题目