题目内容
分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2
下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.
①图乙和图丙中(1)(2)(3)是否为正方形?为什么?
②图中(1)(2)(3)的面积分别是多少?
③图中(1)(2)的面积之和是多少?
④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?
由此你能得到关于直角三角形三边长的关系吗?
已知二次函数y = 2x2 -4x -6.
(1)用配方法将y = 2x2 -4x -6化成y = a (x - h) 2 + k的形式;并写出对称轴和顶点坐标。
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)当x取何值时,y随x的增大而减少?
(4)当x取何值是,,y<0,
(5)当时,求y的取值范围;
(6)求函数图像与两坐标轴交点所围成的三角形的面积.
二次函数y=x2﹣2x+1与x轴的交点个数是( )
A. 0 B. 1 C. 2 D. 3
如图,BD是△ABC的角平分线,DE⊥AB,DF⊥BC垂足分别为E、F.
(1)求证:BE=BF;
(2)若△ABC的面积为70,AB=16,DE=5,则BC= .
若x2+mx+n分解因式的结果是(x+2)(x﹣1),则m+n的值为_____.
已知点A的坐标为(﹣2,3),点B与点A关于x轴对称,点C与点B关于y轴对称,则点C关于x轴对称的点的坐标为( )
A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)
在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有_____个.
如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E.CE=2,延长CE,BA交于点F.
(1)求证:△ADB≌△AFC;
(2)求BD的长度.