题目内容
观察:
=
-
,
=
-
,
=
-
…通过观察,当
+(ab-2)2=0时,求:
+
+
+…+
的值.
| 1 |
| 1×2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| a-1 |
| 1 |
| ab |
| 1 |
| (a+1)(b+1) |
| 1 |
| (a+2)(b+2) |
| 1 |
| (a+2012)(b+2012) |
分析:先根据非负数的性质求出a、b的值,再根据所给的例子进行计算即可.
解答:解:∵
+(ab-2)2=0,a-1≥0,(ab-2)2≥0
∴a-1=0,ab-2=0,
∴a=1,b=1
原式=
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
.
| a-1 |
∴a-1=0,ab-2=0,
∴a=1,b=1
原式=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 2 |
| 3×4 |
| 1 |
| 2013×2014 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2013 |
| 1 |
| 2014 |
=1-
| 1 |
| 2014 |
=
| 2013 |
| 2014 |
点评:本题考查的是分式的化简求值,根据题意找出规律是解答此题的关键.
练习册系列答案
相关题目