题目内容
如图,AD是圆O的切线,切点为A,AB是
圆O的弦。过点B作BC//AD,交圆O于点C,连接AC,过
点C作CD//AB,交AD于点D。连接AO并延长交BC
于点M,交过点C的直线于点P,且ÐBCP=ÐACD。
(1) 判断直线PC与圆O的位置关系,并说明理由:
(2) 若AB=9,BC=6,求PC的长。
解析: (1) 直线PC与圆O相切。
如图j,连接CO并延长,交圆O于点N,连接BN。
∵AB//CD,∴ÐBAC=ÐACD。
∵ÐBAC=ÐBNC,∴ÐBNC=ÐACD。
∵ÐBCP=ÐACD,∴ÐBNC=ÐBCP。
∵CN是圆O的直径,∴ÐCBN=90°。
∴ÐBNC+ÐBCN=90°,∴ÐBCP+ÐBCN=90°。
∴ÐPCO=90°,即PC^OC。
又点C在圆O上,∴直线PC与圆O相切。
(2) ∵AD是圆O的切线,∴AD^OA,即ÐOAD=90°。
∵BC//AD,∴ÐOMC=180°-ÐOAD=90°,即OM^BC。
∴MC=MB。∴AB=AC。
在Rt△AMC中,ÐAMC=90°,AC=AB=9,MC=
BC=3,
由勾股定理,得AM=
=
=6
。
设圆O的半径为r。
在Rt△OMC中,ÐOMC=90°,OM=AM-AO=6
-r,MC=3,OC=r,
由勾股定理,得OM 2+MC 2=OC 2,即(6
-r)2+32=r2。解得r= ![]()
。
在△OMC和△OCP中,
∵ÐOMC=ÐOCP,ÐMOC=ÐCOP,
∴△OMC~△OCP。∴
=
,即
=
。
∴PC=
。
为了调查某班学生每天使用零花钱的情况,小张随机调查了15名同学,结果如下表:
| 每天使用零花钱(单位:元) | 0 | 1 | 3 | 4 | 5 |
| 人数 | 1 | 3 | 5 | 4 | 2 |
A、众数是5元 B、平均数是2.5元 C、极差是4元 D、中位数是3元