题目内容


如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,

(1)求证:AD平分∠BAC;

(2)已知AC=20,BE=4,求AB的长.


【考点】全等三角形的判定与性质;角平分线的性质.

【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;

(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.

【解答】(1)证明:∵DE⊥AB,DF⊥AC,

∴∠E=∠DFC=90°,

∴在Rt△BED和Rt△CFD中

∴Rt△BED≌Rt△CFD(HL),

∴DE=DF,

∵DE⊥AB,DF⊥AC,

∴AD平分∠BAC;

(2)解:∵Rt△BED≌Rt△CFD,

∴AE=AF,CF=BE=4,

∵AC=20,

∴AE=AF=20﹣4=16,

∴AB=AE﹣BE=16﹣4=12.

【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网