题目内容
如果一个多边形的每个内角都是120°,那么这个多边形是( )
A. 五边形 B. 六边形 C. 七边形 D. 八边形
对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.
(1)计算:F(243),F(617);
(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.
甲数比乙数的还多1,设乙数为x,则甲数可表示为( )
A. B. 4x﹣1 C. 4(x﹣1) D. 4(x+1)
在四边形ABCD中,对角线AC,BD相交于点O.如果AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,这个条件可以是_______________.(写出一种情况即可)
用配方法解方程,原方程应变形为( )
A. B. C. D.
某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM= .
如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
(1)求证:BM=MN;
(2)若∠BAD=60°,AC平分,AC=2, 写出求BN长的思路.
某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为( )
A. 7x+2=8x﹣4 B. 7x﹣2y=8x+4 C. 7x+2=8x+4 D. 7x﹣2y=8x﹣4