题目内容
如图是二次函数y=ax2+bx+c的图象,下列结论: ①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
B 【解析】试题解析:∵抛物线的顶点坐标为(-1,4),∴二次三项式ax2+bx+c的最大值为4,①正确; ∵x=2时,y<0,∴4a+2b+c<0,②正确; 根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为-2,③错误; 使y≤3成立的x的取值范围是x≥0或x≤-2,④错误, 故选B. 考点:1.二次函数的图象;2.二次函数图象与系数的关系...某同学在用描点法画二次函数y=
+bx+c的图象时,列出了下面的表格:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | ﹣11 | ﹣2 | 1 | ﹣2 | ﹣5 | … |
由于粗心,他算错了其中一个y值,则这个错误的数值是( ).
A.﹣11 B.﹣2 C.1 D.﹣5
查看答案若圆锥的底面积为16πcm2,母线长为12cm,则它的侧面展开图的圆心角为( )
A. 240° B. 120° C. 180° D. 90°
查看答案已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=
在同一平面直角坐标系中的图象大致是( )
![]()
如图,正方形ABCD内接于⊙O,⊙O的直径为
分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( ).
![]()
A.
B.
C.
D.![]()
如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为( )
![]()
A.6 B.5 C.4 D.3
查看答案 试题属性- 题型:单选题
- 难度:简单
二次函数y=
(x﹣1)2+2的图象可由y=
x2的图象( )
A. 向左平移1个单位,再向下平移2个单位得到
B. 向左平移1个单位,再向上平移2个单位得到
C. 向右平移1个单位,再向下平移2个单位得到
D. 向右平移1个单位,再向上平移2个单位得到
D 【解析】y=x2向右平移1个单位得到:y=x-1)2,再向上平移2个单位得到:y=x-1)2+2.所以选D.如图,将正方形图案绕中心O旋转180°后,得到的图案是( )
![]()
A.
B.
C.
D. ![]()
下列方程是关于x的一元二次方程的是( )
A. ax2+bx+c=0 B.
=2 C. x2+2x=x2﹣1 D. 3(x+1)2=2(x+1)
阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
【解析】
∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;
(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;
(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.
查看答案某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元?
查看答案若x=2m+1,y=3+4m.
(1)请用含x的代数式表示y;
(2)如果x=4,求此时y的值.
查看答案 试题属性- 题型:单选题
- 难度:中等
函数
是
关于
的反比例函数,则
_______.
如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.
![]()
一个直角三角形斜边上的高与中线分别是5㎝和6㎝,则它的面积是______
.
反比例函数
经过点(-2,1),则一次函数
的图象经过点(-1,_____).
方程(x+2)2=x+2的解是 ____________________.
查看答案如图,在□ABCD中,BE平分∠ABC,CF平分∠BCD,E、F在AD上,BE与CF相交于点G,若AB=7,BC=10,则△EFG与△BCG的面积之比为( )
![]()
A. 4:25 B. 49:100 C. 7:10 D. 2:5
查看答案 试题属性- 题型:填空题
- 难度:中等
一次函数y=kx+b的图象与反比例函数y=
的图象交于点A(2,1),B(-1,n)两点.
(1)求反比例函数的解析式;
(2)求一次例函数的解析式;
(3)求△AOB的面积.
![]()
如图所示, 有一建筑工地从10m 高的窗A处用水管向外喷水,喷出的水呈抛物线状,如果抛物线的最高点M 离墙1m,离地面
m.
(1)求抛物线的解析式;
(2)求水流落地点B离墙的距离OB.
![]()
如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线.
![]()
商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是 ;
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
查看答案已知抛物线经过三点A(2,6)、B(-1,0)、C(3,0).
求这条抛物线所对应的二次函数的解析式;
(2)写出它的对称轴和顶点坐标.
查看答案如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+4上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为____.
![]()
- 题型:解答题
- 难度:中等
如图,反比例函数
和正比例函数y2=k2x 的图象交于A(-1,-3)、B(1,3)两点,若
>k2x,则x的取值范围是___________________.
![]()
已知点A(-1,y1)、B(2,y2)都在双曲线y=
上,且y1>y2,则m的取值范围是______________
若抛物线y=x2-2x-3与x轴分别交于A,B两点,则AB的长为 ______.
查看答案直线y=x+3上有一点P(3,a),则点P关于原点的对称点
为___________.
如图,两个反比例函数
和
的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为( )
![]()
A. 3 B. 4 C.
D. 5
如图是二次函数y=ax2+bx+c的图象,下列结论: ①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案 试题属性- 题型:填空题
- 难度:中等
如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为( )
![]()
A.6 B.5 C.4 D.3
D. 【解析】 试题分析:连接OC, ∵AB是⊙O的直径,弦CD⊥AB,垂足为E,AB=10,CD=8,∴OC=5,CE=4, ∴OE=. 故选D. 考点:1.垂径定理;2.勾股定理.反比例函数
图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是( )
A. y2<y1<y3 B. y1<y2<y3 C. y3<y1<y2 D. y3<y2<y1
查看答案一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A.
B.
C.
D. ![]()
如图,⊙O是△ABC的外接圆,∠OCB=40°则∠A的度数等于( )
![]()
A. 60° B. 50° C. 40° D. 30°
查看答案在下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.
B .
C .
D. ![]()
已知反比例函数
,下列结论不正确的是
A.图象必经过点(-1,2) B.y随x的增大而增大
C.图象在第二、四象限内D.若x>1,则y>-2
查看答案 试题属性- 题型:单选题
- 难度:简单
直线y=kx+4经过点(1,2),求不等式kx+4≥0的解集.
x≤2 【解析】试题分析:把点(1,2)的坐标代入直线解析式求出k值,从而得到直线解析式y=-2x+4,然后解不等式-2x+4≥0即可. 试题解析:把点(1,2)的坐标代入直线解析式y=kx+4中, 得k+4=2, 解得:k=﹣2, 则直线的函数解析式为:y=﹣2x+4, 由﹣2x+4≥0,得:x≤2.某校开展“节约每一滴水”活动,为了了解开展活动的一个月以来节约用水的病况,从八年级的400名同学中选出20名同学统计了解各自家庭一个月的节水情况,见下表:
节水(m3) | 0.2 | 0.25 | 0.3 | 0.4 | 0.5 |
家庭数(个) | 2 | 4 | 6 | 7 | 1 |
分别求出这20个家庭节水的中位数和众数.请你估计这400名同学的家庭一个月节约用水的总量大约是多少m3?
查看答案如图,△ABC和△ABD中,∠C=∠D=Rt∠,E是BC边上的中线.请你说明CE=DE的理由.
![]()
如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.
![]()
如果关于x的不等式k﹣x+6>0的正整数解为1、2、3,那么k的取值范围是多少?
查看答案解不等式组:
,并把解集在数轴上表示出来.
![]()
- 题型:解答题
- 难度:中等
下列命题中是真命题的是( )
A. 确定性事件发生的概率为1;
B. 平分弦的直径垂直于弦;
C. 正n边形都是轴对称图形,并且有n条对称轴;
D. 两边及其一边的对角对应相等的两个三角形全等。
C 【解析】 A选项确定性事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率是0,所以是假命题。 B选项平分弦(不是直径)的直径垂直于弦,这里没有强调弦不是直径,所以是假命题。 C选项是真命题。 D选项两边及其一边的对角对应相等的两个三角形是不一定全等的,所以是假命题。用a、b、c作三角形的三边,其中不能构成直角三角形的是( )
A. a2=(b+c)(b﹣c) B. a:b:c=1:
:2
C. a=32,b=42,c=52 D. a=5,b=12,c=13
查看答案如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )
![]()
A. (1)(2)(3) B. (1)(3)(4) C. (2)(3)(4) D. (1)(2)(4)
查看答案如图,PB⊥AB于B,PC⊥AC于C,且PB=PC,则△APB≌△APC的理由是( )
![]()
A. SAS B. ASA C. HL D. AAS
查看答案如图,在△ABC中,AB=AC=5,P是BC边上除B,C点外的任意一点,则代数式AP2+PB·PC等于 ( )
![]()
A. 25 B. 15 C. 20 D. 30
查看答案如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( )
![]()
A. x<-2 B. -2<x<-1 C. -2<x<0 D. -1<x<0
查看答案 试题属性- 题型:单选题
- 难度:简单
如果两个角互补,并且它们的差是30°,那么较大的角是________.
105° 【解析】本题考查补角的知识 设较大角为x,则其补角为180°-x,根据它们的差是30°可列出方程,解出即可. 设较大角为x,则其补角为180°-x, 由题意得:x-(180°-x)=30°, 解得:x=105°. 故较大的角为.在数轴上离开原点4个长度单位的点表示的数是 ________ 。
查看答案已知代数式2a3bn+1与﹣3am﹣2b2是同类项,则2m+3n=________.
查看答案一列单项式:﹣x2 , 3x3 , ﹣5x4 , 7x5 , …,按此规律排列,则第7个单项式为________
查看答案若|m﹣3|+(n+2)2=0,则m+2n的值为 .
查看答案如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有( )
![]()
A. 1条 B. 2条 C. 3条 D. 5条
查看答案 试题属性- 题型:填空题
- 难度:简单