题目内容
如图,直线AC‖BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是O0)
⑴当动点P落在第①部分时,如图1,求证:∠APB=∠PAC+∠PBD
⑵当动点P落在第②部分时, ∠APB=∠PAC+∠PBD是否成立?在图2中画出图形,若成立,写出推理过程,若不成立,直接写出这三个角之间的关系.
⑶当动点P落在第③部分时,延长BA,点P在射线BA的左侧和右侧时,分别探究∠PAC、∠APB、∠PBD之间 关系,在图3中画出图形,并直接写出相应的结论.