题目内容
如图,将⊙沿弦折叠,圆心恰好经过圆心,点是弧上一点,则的度数为( )
A. 45° B. 30° C. 75° D. 60°
如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求证:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的长度.
如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于( )
A. B. C. D.
如图,在中, , ,将绕点顺时针旋转,得到,连接,交于点,则与的周长之和为____ .
我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l: 与x轴、y轴分别交于A、B,∠OAB=30º,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是( )
A. 6 B. 8 C. 10 D. 12
如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,且OC=3OA.点P是抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线BC于点D,连接PC.
(1)求抛物线的解析式;
(2)如图2,当动点P只在第一象限的抛物线上运动时,求过点P作PF⊥BC于点F,试问△PDF的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由.
(3)当点P在抛物线上运动时,将△CPD沿直线CP翻折,点D的对应点为点Q,试问,四边形CDPQ是否成为菱形?如果能,请求出此时点P的坐标,如果不能,请说明理由.
如图,在边长为2的正方形ABCD中,点E是CD边的中点,延长BC至点F,使得CF=CE,连接BE,DF,将△BEC绕点C按顺时针方向旋转,当点E恰好落在DF上的点H处时,连接AG,DG,BG,则AG的长是_____.
如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是( )
若点P在第二象限内,点P到x轴的距离是5,到y轴的距离是2,则点P的坐标为( )
A. (-5,2) B. (-5,-2) C. (-2,5) D. (-2,-5)