题目内容
【题目】为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.
(1)求A、B两种学习用品的单价各是多少元?
(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?
【答案】
(1)
解:设A型学习用品单价x元,
根据题意得:
=
,
解得:x=20,
经检验x=20是原方程的根,
x+10=20+10=30.
答:A型学习用品20元,B型学习用品30元;
(2)
解:设可以购买B型学习用品a件,则A型学习用品(1000﹣a)件,由题意,得:
20(1000﹣a)+30a≤28000,
解得:a≤800.
答:最多购买B型学习用品800件.
【解析】(1)设A型学习用品单价x元,利用“用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同”列分式方程求解即可;
(2)设可以购买B型学习用品a件,则A型学习用品(1000﹣a)件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.
【考点精析】解答此题的关键在于理解分式方程的应用的相关知识,掌握列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位).
练习册系列答案
相关题目