题目内容
计算2-3的结果是( )
A.-1 B.-2 C.1 D.2
(本题8分)已知,实数,,在数轴上的位置如图所示,化简:.
如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若1=135°,则2的度数为( )
A. 65° B.55° C. 45° D. 35°
把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是 .
与无理数最接近的整数是( )
A.4 B.5 C.6 D.7
(本题满分6分)如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°.已知旗杆DE的高度为12米,试求楼房CB的高度.
(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)
如图,在平面直角坐标系中,点P的坐标为(0,4),直线与轴、轴分别交于A、B,点M是直线AB上的一个动点,则PM长的最小值为 .
某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.
(1)求y关于x的函数关系式(不要求写出x的取值范围);
(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?
如图,一次函数=x+b与一次函数=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )
A.x>﹣2 B.x>0 C.x>1 D.x<1