题目内容

6.如图,过正方形ABCD的顶点B作直线l,过A、C作直线L的垂线,垂足分别为E、F,若AE=1,CF=2,则AB的长为(  )
A.$\sqrt{2}$B.2C.3D.$\sqrt{5}$

分析 由正方形的性质得出AB=BC=CD=DA,∠ABC=90°,得出∠CBF+∠ABE=90°,证出∠BAE=∠CBF,由AAS证明△BFC≌△AEB,得出BF=AE=1,再根据勾股定理求出AB2,即可得出AB.

解答 解:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠ABC=90°,
∴∠CBF+∠ABE=90°,
∵AE⊥l,CF⊥l,
∴∠AEB=∠CFB=90°,
∴∠ABE+∠BAE=90°,
∴∠BAE=∠CBF,
在△BFC和△AEB中,
$\left\{\begin{array}{l}{∠CFB=∠AEB}\\{∠CBF=∠BAF}\\{BC=AB}\end{array}\right.$,
∴△BFC≌△AEB(AAS),
∴BF=AE=1,CF=BE=2
∴AB2=AE2+BE2=12+22=5,
∴AB=$\sqrt{5}$,
故选D.

点评 本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了直角三角形中勾股定理的运用,本题中求证△ABE≌△BCF是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网