题目内容
【题目】如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿边BC向点C运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动设点F的运动时间为t秒.
![]()
(1)如图1,连接DE,AF.若DE⊥AF,求t的值;
(2)如图2,连结EF,DF.当t为何值时,△EBF∽△DCF?
【答案】(1)t=1;(2)当
时,△EBF∽△DCF;
【解析】
(1)利用正方形的性质及条件,得出△ABF≌△DAE,由AE=BF列式计算.
(2)利用△EBF∽△DCF,得出
,列出方程求解.
解:(1)∵DE⊥AF,
∴∠AOE=90°,
∴∠BAF+∠AEO=90°,
∵∠ADE+∠AEO=90°,
∴∠BAF=∠ADE,
又∵四边形ABCD是正方形,
∴AB=AD,∠ABF=∠DAE=90°,
在△ABF和△DAE中,
,
∴△ABF≌△DAE(ASA)
∴AE=BF,
∴1+t=2t,
解得t=1;
![]()
(2)如图2,
∵四边形ABCD是正方形,
∴AB=BC=CD=4,
∵BF=2t,AE=1+t,
∴FC=4-2t,BE=4-1-t=3-t,
当△EBF∽△DCF时,
,
∴
=
,
解得,t1=
,t2=
(舍去),
故t=
.
所以当t=
时,△EBF∽△DCF.
![]()
【题目】足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度
(单位:
)与足球被踢出后经过的时间
(单位:
)之间的关系如下表:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
| 0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列结论:①足球距离地面的最大高度为
;②足球飞行路线的对称轴是直线
;③足球被踢出
时落地;④足球被踢出
时,距离地面的高度是
.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4