题目内容
考点:相似三角形的判定与性质,正方形的性质
专题:
分析:作AH⊥FM,连接AF,AM,根据正方形的性质分别证明△AFH≌△AFD和Rt△AMH≌Rt△AMB,由全等三角形的性质就可以得出结论
解答:解:作AH⊥FM,设∠EAF=α,
∴∠AHF=∠AHM=90°
∵四边形ABCD是正方形,
∴AD=AB=BC=CD=4,∠D=∠B=90°
∵EF⊥FM,
∴∠EFM=90°
∵AE=AF,
∴∠EAF=∠EFA=a,
∴∠AFH=90°-α=∠AFD,
在△ADF和△AHF中,
,
∴△AFH≌△AFD﹙AAS﹚
∴DF=HF,AD=AH=4=AB,
在Rt△AHM和Rt△ABM中,
,
∴Rt△AMH≌Rt△AMB,
∴HM=BM.
∵△FMC的周长=CF+FM+MC,
∴△FMC的周长=CF+FD+MB+MC=CD+CB=8.
故答案为:8.
∴∠AHF=∠AHM=90°
∵四边形ABCD是正方形,
∴AD=AB=BC=CD=4,∠D=∠B=90°
∵EF⊥FM,
∴∠EFM=90°
∵AE=AF,
∴∠EAF=∠EFA=a,
∴∠AFH=90°-α=∠AFD,
在△ADF和△AHF中,
|
∴△AFH≌△AFD﹙AAS﹚
∴DF=HF,AD=AH=4=AB,
在Rt△AHM和Rt△ABM中,
|
∴Rt△AMH≌Rt△AMB,
∴HM=BM.
∵△FMC的周长=CF+FM+MC,
∴△FMC的周长=CF+FD+MB+MC=CD+CB=8.
故答案为:8.
点评:本题考查了正方形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,解答时正确作辅助线是解答本题的关键.
练习册系列答案
相关题目
某校八年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )
| A、全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间 |
| B、将六个平均成绩之和除以6,就得到全年级学生的平均成绩 |
| C、这六个平均成绩的最大值与最小值的一半就是全年级学生的平均成绩 |
| D、这六个平均成绩的最大值与最小值的一半不可能是全年级学生的平均成绩 |