题目内容

3.(1)解方程组:$\left\{\begin{array}{l}{x-y=4①}\\{3x+y=16②}\end{array}\right.$
(2)解不等式组:$\left\{\begin{array}{l}{2x+1<-1}\\{3-x≥1}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.

解答 解:(1)①+②得:4x=20,即x=5,
把x=5代入①得:y=1,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+1<-1①}\\{3-x≥1②}\end{array}\right.$,
由①得:x<-1,
由②得:x≤2,
则不等式组的解集为x<-1.

点评 此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网