题目内容
若x+y+z=0,求x(
+
)+y(
+
)+z(
+
)的值.
| 1 |
| y |
| 1 |
| z |
| 1 |
| x |
| 1 |
| z |
| 1 |
| x |
| 1 |
| y |
分析:先将x(
+
)+y(
+
)+z(
+
)去括号,相加后得到=
+
+
,再将x+z=-y,x+y=-z,y+z=-x整体代入即可求解.
| 1 |
| y |
| 1 |
| z |
| 1 |
| x |
| 1 |
| z |
| 1 |
| x |
| 1 |
| y |
| x+z |
| y |
| x+y |
| z |
| y+z |
| x |
解答:解:原式=
+
+
+
+
+
=
+
+
∵x+y+z=0,
∴x+z=-y,x+y=-z,y+z=-x,
∴原式=
+
+
=-1-1-1
=-3.
| x |
| y |
| x |
| z |
| y |
| x |
| y |
| z |
| z |
| x |
| z |
| y |
=
| x+z |
| y |
| x+y |
| z |
| y+z |
| x |
∵x+y+z=0,
∴x+z=-y,x+y=-z,y+z=-x,
∴原式=
| -y |
| y |
| -z |
| z |
| -x |
| x |
=-1-1-1
=-3.
点评:本题考查了分式的化简求值,整体代入是解题的关键.
练习册系列答案
相关题目