题目内容
如图,在⊙O的内接四边形ABCD中,AB=AD,∠BCD=140°.若点E在弦AB所对的劣弧上,则∠E=__________°.
一元二次方程的根是 .
如图,已知△ABC的三个顶点在格点上.
(1)作出△ABC关于x轴对称的图形△
(2)求出△的面积.
如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,
斜边AB=6cm,DC=7cm,把三角板DCE绕点C顺时针旋转15°得到△D′CE′,如图乙.这时AB与CD′相交于点O,D′E′与AB相交于点F,连接AD′.
(1)求∠OFE′的度数;
(2)求线段AD′的长;
(3)若把三角形D′C E′ 绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2 的内部、外部、还是边上?证明你的判断.
如图所示,是⊙O的一条弦,,垂足为,交⊙O于点,点在⊙O
上.
(1)若,求的度数;
(2)若,,求的长.
下列说法:
(1)直角三角形的两边长分别为3和4,则三角形的外接圆直径是5;
(2)点A、B、C在⊙O上,∠BOC=100°,则∠A=50°或130°;
(3)各角都相等的圆的内接多边形是正多边形;
(4)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=3,则OC长度为整数值的个数是4个.其中正确结论的个数是
A.1个 B.2个 C.3个 D.4个
已知OA=5cm,以O为圆心,r为半径作⊙O.若点A在⊙O内,则r的值可以是
A.3cm B.4cm C.5cm D.6cm
一元二次方程有一个根为2,写出这样的一个一元二次方程
已知:,则的值为 .