题目内容
12.在下列图形中,既是轴对称图形,又是中心对称图形的是( )| A. | 直角三角形 | B. | 正五边形 | C. | 正方形 | D. | 平行四边形 |
分析 根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
解答 解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、既是轴对称图形,又是中心对称图形,故本选项正确;
D、不是轴对称图形,是中心对称图形,故本选项错误.
故选C.
点评 本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
练习册系列答案
相关题目
3.
如图,E,F分别是?ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为( )
| A. | 6 | B. | 12 | C. | 18 | D. | 24 |
20.
如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)( )
| A. | $\frac{h}{sinα}$ | B. | $\frac{h}{cosα}$ | C. | $\frac{h}{tanα}$ | D. | h•cosα |
7.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
运动员甲测试成绩表

(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)
运动员甲测试成绩表
| 测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 成绩(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)
17.
如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为( )
| A. | 60° | B. | 70° | C. | 80° | D. | 110° |