题目内容
已知x+y=1,xy=
,求下列代数式的值:
(1)x2y+xy2
(2)(x2+2)(y2+2)
| 1 |
| 2 |
(1)x2y+xy2
(2)(x2+2)(y2+2)
(1)∵x+y=1,xy=
,
∴x2y+xy2=xy(x+y)=
×1=
;
(2)∵x+y=1,xy=
,
∴(x+y)2=x2+2xy+y2=x2+y2+1=1,即x2+y2=0,
则(x2+2)(y2+2)=(xy)2+2(x2+y2)+4=
+4=4
.
| 1 |
| 2 |
∴x2y+xy2=xy(x+y)=
| 1 |
| 2 |
| 1 |
| 2 |
(2)∵x+y=1,xy=
| 1 |
| 2 |
∴(x+y)2=x2+2xy+y2=x2+y2+1=1,即x2+y2=0,
则(x2+2)(y2+2)=(xy)2+2(x2+y2)+4=
| 1 |
| 4 |
| 1 |
| 4 |
练习册系列答案
相关题目
已知3x=4y,则
=( )
| x |
| y |
A、
| ||
B、
| ||
C、-
| ||
D、-
|