题目内容
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.
已知关于x的一元二次方程x2+(2m+1)x+m2-4=0.
(1)当m为何值时,方程有两个不相等的实数根?
(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.
下列计算正确的是( )
A. (a3)2=a6 B. a•a2=a2 C. a3+a2=a6 D. (3a)3=9a3
如图,?ABCD的对角线AC、BD相交于点O,点E是BC的中点,若△ABD的周长为8cm,则△BOE的周长是_____cm.
下列运算正确的是( )
A. a+a=2a2 B. a2•a=2a2 C. (2a)2÷a=4a D. (﹣ab)2=ab2
如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.
为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.
如图,抛物线y=﹣x2+bx+c经过原点和点A(6,0),与其对称轴交于点B,P是抛物线y=﹣x2+bx+c上一动点,且在x轴上方.过点P作x轴的垂线交动抛物线y=﹣(x﹣h)2(h为常数)于点Q,过点Q作PQ的垂线交动抛物线y=﹣(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.
(1)求抛物线y=﹣x2+bx+c的函数关系式及点B的坐标;
(2)当h=0时.
①求证: ;
②设△PQQ′与△OAB重叠部分图形的周长为l,求l与m之间的函数关系式;
(3)当h≠0时,是否存在点P,使四边形OAQQ′为菱形?若存在,请直接写出h的值;若不存在,请说明理由.
在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是( )
A. B. C. D.