题目内容

一组数据x1,x2,x3,x4,x5的平均数是x,另一组数据2x1+5,2x2+5,2x3+5,2x4+5,2x5+5的平均数是


  1. A.
    x
  2. B.
    2x
  3. C.
    2x+5
  4. D.
    10x+25
C
分析:本题需先根据要求的数分别列出式子,再根据x1,x2,x3,x4,x5的平均数是x,把它代入所求的式子,即可求出正确答案.
解答:这组数据2x1+5,2x2+5,2x3+5,2x4+5,2x5+5的平均数是:
(2x1+5+2x2+5+2x3+5+2x4+5+2x5+5)÷5
=[(2x1+2x2+2x3+2x4+2x5)+(5+5+5+5+5)]÷5
=[2(x1+x2+x3+x4+x5)+(5+5+5+5+5)]÷5
根据x1,x2,x3,x4,x5的平均数是x,
∴(x1+x2+x3+x4+x5)÷5=x,
∴x1+x2+x3+x4+x5=5x,
把x1+x2+x3+x4+x5=5x代入[2(x1+x2+x3+x4+x5)+(5+5+5+5+5)]÷5得;
=(10x+25)÷5,
=2x+5.
故选C.
点评:本题主要考查了算术平均数,在解题时要根据算术平均数的定义,再结合所给的条件是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网