题目内容

某镇为响应中央关于建设社会主义新农村的号召,决定公路相距25km的A、 B两站之间E点修建一个土特产加工基地,如图,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要使C、D两村到E点的距离相等,那么基地E应建在离A站多少km的地方?

 

 

【答案】

10km

【解析】

试题分析:设AE=x千米,则BE=(25-x)千米,由题意知Rt△DAE的斜边长与Rt△EBC的斜边长相等,根据勾股定理即可列方程求解。

设AE=x千米,则BE=(25-x)千米,

在Rt△DAE中,DA2+AE2=DE2

在Rt△EBC中,BE2+BC2=CE2

∵CE=DE

∴DA2+AE2=BE2+BC2

∴152+x2=102+(25-x)2   

解得x=10       

答:基地应建在离A站10千米的地方。

考点:本题考查的是勾股定理的应用

点评:解答本题的关键是读懂题意,根据Rt△DAE的斜边长与Rt△EBC的斜边长相等列方程.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网