题目内容
4.分析 DF=EF,作EG∥AB交BC于G,就可以得出∠EGC=∠ABC,∠DBF=∠EGF,∠D=∠GEF,就可以得出△DBF≌△EGF,就可以得出结论.
解答 解:DF=EF,
如图,作EG∥AB交BC于G,![]()
则∠CGE=∠ABC,∠GEF=∠D,∠DBF=∠EGF.
∵AB=AC,
∴∠ABC=∠C,
∴∠C=∠EGC,
∴CE=EG,
∵CE=BD,
∴BD=GE.
在△DBF和△EGF中,
$\left\{\begin{array}{l}{∠D=∠GEF}\\{BD=GE}\\{∠DBF=∠EGF}\end{array}\right.$,
∴△DBF≌△EGF(ASA),
∴DF=EF.
点评 本题考查了等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定语言性质的运用,解答时证明三角形全等是关键.
练习册系列答案
相关题目
12.下列运算正确的是( )
| A. | -|-3|=3 | B. | -(-3)=3 | C. | 3ab-ab=3 | D. | -23=-6 |