题目内容
如图,三角形ABC中,EF平行于BC,AB=4AE,三角形甲、乙、丙的面积之比是
1:3:12
1:3:12
.分析:由“EF平行于BC,AB=4AE”可得:AE:AB=1:4,AF:AC=1:4,再据“等高不等底的三角形的面积比就等于其对应底的比”,所以甲=
S△AEC,乙=
S△AEC,丙=
S△ABC,又因S△AEC=
S△ABC,于是就可以求出三角形甲、乙、丙的面积之比.
1 |
4 |
3 |
4 |
3 |
4 |
1 |
4 |
解答:解:因为AE:AB=1:4,AF:AC=1:4,
所以甲=
S△AEC,乙=
S△AEC,丙=
S△ABC,
又因S△AEC=
S△ABC,
则甲=
S△AEC,
=
×
S△ABC,
=
S△ABC,
乙=
S△AEC,
=
×
S△ABC,
=
S△ABC,
所以S甲:S乙:S丙=
:
:
=1:3:12;
故答案为:1:3:12.
所以甲=
1 |
4 |
3 |
4 |
3 |
4 |
又因S△AEC=
1 |
4 |
则甲=
1 |
4 |
=
1 |
4 |
1 |
4 |
=
1 |
16 |
乙=
3 |
4 |
=
3 |
4 |
1 |
4 |
=
3 |
16 |
所以S甲:S乙:S丙=
1 |
16 |
3 |
16 |
3 |
4 |
故答案为:1:3:12.
点评:解答此题的主要依据是:等高不等底的三角形的面积比就等于其对应底的比.
练习册系列答案
相关题目