题目内容
【题目】A、B、C三位好朋友沿着小区的环形跑道匀速慢跑锻炼,他们同时从跑道一固定点出发,B、C两人同向,A与B、C反向。A在第一次遇上B后1.5分钟第一次遇上C,再经过2.5分钟第二次遇上B。已知A的速度与B的速度的比是3∶2,环形跑道的周长是1100米,求B、C两人的速度每分钟各是多少米。
【答案】B:110米/分;C:35米/分
【解析】
A在第一次遇上B后1.5分钟第一次遇上C,再经过2.5分钟第二次遇上B。则A与B跑一圈的时间是1.5+2.5=4(分钟),于是可以求出A、B的速度和是1100÷(1.5+2.5)=275(米/分)。再根据A的速度与B的速度的比是3∶2,求出A的速度与B的速度。A和C跑一圈的时间是1.5+2.5+1.5=5.5(分钟),这样可以求出A和C的速度和,进而求出C的速度。
A、B的速度和:1100÷(1.5+2.5)=275(米/分)
A的速度:275×=165(米/分) B的速度:275×=110(米/分)
C的速度:1100÷(1.5+2.5+1.5)-165=35(米/分)
练习册系列答案
相关题目