【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,P为底面正方形ABCD内一个动点,Q为棱AA1上的一个动点,若|PQ|=2,则PQ的中点M的轨迹所形成图形的面积是( )A.B.C.3D.4π
【题目】定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和. 如:1= + + ,1= + + + ,1= + + + + ,…依此类推可得:1= + + + + + + + + + + + + ,其中m≤n,m,n∈N* . 设1≤x≤m,1≤y≤n,则 的最小值为( )A.B.C.D.
【题目】甲、乙两位同学期末考试的语文、数学、英语、物理成绩如茎叶图所示,其中甲的一个数据记录模糊,无法辨认,用a来表示,已知两位同学期末考试四科的总分恰好相同,则甲同学四科成绩的中位数为( )A.92B.92.5C.93D.93.5
【题目】阅读如图所示的程序框图,若输出的数据为58,则判断框中应填入的条件为( ) A.k≤3B.k≤4C.k≤5D.k≤6
【题目】阅读如图的程序框图,运行相应的程序,则输出的S值为( )A.2B.3C.4D.5
【题目】设函数f(x)=|x﹣a|,a∈R. (Ⅰ)当a=2时,解不等式:f(x)≥6﹣|2x﹣5|;(Ⅱ)若关于x的不等式f(x)≤4的解集为[﹣1,7],且两正数s和t满足2s+t=a,求证: .
【题目】在直角坐标标系xoy中,已知曲线 (α为参数,α∈R),在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线 = ,曲线C3:ρ=2cosθ. (Ⅰ)求曲线C1与C2的交点M的直角坐标;(Ⅱ)设A,B分别为曲线C2 , C3上的动点,求|AB|的最小值.
【题目】已知a∈R,函数f(x)=log2( +a).(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.(3)设a>0,若对任意t∈[ ,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.
【题目】设f(x)= (a∈R)在点(1,f(1))处的切线与直线2x+y+1=0垂直.(1)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求实数m的取值范围;(2)设函数g(x)=(x+1)f(x)﹣b(x﹣1)在[1,e]上有且只有一个零点,求实数b取值范围.
【题目】若函数f(x)满足下列条件:在定义域内存在x0 , 使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)具有性质M;反之,若x0不存在,则称函数f(x)不具有性质M.(1)证明:函数f(x)=2x具有性质M,并求出对应的x0的值;(2)已知函数 具有性质M,求a的取值范围.