得 分 评卷人 善于学习的小敏查资料知道:对应角相等,对应边成比例的两 个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其 他两边相交,所构成的三角形与原三角形相似”,提出如下两个 问题,你能帮助解决吗? 问题一 平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似? (1)从特殊情形入手探究.假设梯形ABCD中, AD∥BC,AB=6,BC=8,CD=4, AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似?
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形______________
(填“相似”或“不相似”或“相似性无法确定”.不要求证明) . 问题二 平行于梯形底边的直线截两腰所得的两个小梯形是否相似? (1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形______________
(填“相似”或“不相似”或“相似性无法确定”.不要求证明). (2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点P,Q在梯形的两腰上,如图②), 使得梯形APQD与梯形PBCQ相似吗? 请根据相似梯形的定义说明理由.
(3)一般结论:对于任意梯形(如图③),一定 (填“存在”或“不存在”) 平行于梯形底边的直线PQ,使截得的两个小梯形相似. 若存在,则确定这条平行线位置的条件是= (不妨设AD= a,BC= b,AB=c,CD= d.不要求证明 ) .
0 774 782 788 792 798 800 804 810 812 818 824 828 830 834 840 842 848 852 854 858 860 864 866 868 869 870 872 873 874 876 878 882 884 888 890 894 900 902 908 912 914 918 924 930 932 938 942 944 950 954 960 968 447090
|