摘要:(II)由的面积.得.
网址:http://m.1010jiajiao.com/timu_id_94440[举报]
(1)选修4-4:矩阵与变换
已知曲线C1:y=
绕原点逆时针旋转45°后可得到曲线C2:y2-x2=2,
(I)求由曲线C1变换到曲线C2对应的矩阵M1;
(II)若矩阵
,求曲线C1依次经过矩阵M1,M2对应的变换T1,T2变换后得到的曲线方程.
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
(θ为参数)上求一点,使它到直线l的距离最小,并求出该点坐标和最小距离.
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.
查看习题详情和答案>>
已知曲线C1:y=
(I)求由曲线C1变换到曲线C2对应的矩阵M1;
(II)若矩阵
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.
查看习题详情和答案>>
在一定面积的水域中养殖某种鱼类,每个网箱的产量P是网箱个数x的一次函数,如果放置4个网箱,则每个网箱的产量为16吨;如果放置7个网箱,则每个网箱的产量为10吨,由于该水域面积限制,最多只能放置10个网箱.
(1)试问放置多少个网箱时,总产量Q最高?
(2)若鱼的市场价为m万元/吨,养殖的总成本为5lnx+1万元.
(i)当m=0.25时,应放置多少个网箱才能使总收益y最大?
(ii)当m≥0.25时,求使得收益y最高的所有可能的x值组成的集合.
查看习题详情和答案>>
(1)试问放置多少个网箱时,总产量Q最高?
(2)若鱼的市场价为m万元/吨,养殖的总成本为5lnx+1万元.
(i)当m=0.25时,应放置多少个网箱才能使总收益y最大?
(ii)当m≥0.25时,求使得收益y最高的所有可能的x值组成的集合.
查看习题详情和答案>>