摘要:令得---------2分
网址:http://m.1010jiajiao.com/timu_id_92517[举报]
先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(Ⅰ)设函数f(x)=|x-a|,函数g(x)=x-b,令F(x)=f(x)-g(x),求函数F(x)有且只有一个零点的概率;
(Ⅱ)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率. 查看习题详情和答案>>
(Ⅰ)设函数f(x)=|x-a|,函数g(x)=x-b,令F(x)=f(x)-g(x),求函数F(x)有且只有一个零点的概率;
(Ⅱ)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率. 查看习题详情和答案>>
已知分别以d1,d2为公差的等差数列{an},{bn}满足a1=18,b14=36.
(1)若d1=18,且存在正整数m,使得am2=bm+14-45,求证:d2>108;
(2)若ak=bk=0,且数列a1,a2,…,ak,bk+1,bk+2,…,b14的前n项和Sn满足S14=2Sk,求数列{an},{bn}的通项公式;
(3)在(2)的条件下,令cn=2an,dn=2bn,问不等式cndn+1≤cn+dn是否对n∈N*恒成立?请说明理由. 查看习题详情和答案>>
(1)若d1=18,且存在正整数m,使得am2=bm+14-45,求证:d2>108;
(2)若ak=bk=0,且数列a1,a2,…,ak,bk+1,bk+2,…,b14的前n项和Sn满足S14=2Sk,求数列{an},{bn}的通项公式;
(3)在(2)的条件下,令cn=2an,dn=2bn,问不等式cndn+1≤cn+dn是否对n∈N*恒成立?请说明理由. 查看习题详情和答案>>